એક પાસાને ફેંકવામાં આવ્યો છે. નીચે આપેલ ઘટનાઓની સંભાવના શોધો :
$3$ કે $3$ થી મોટી સંખ્યા આવે.
The sample space of the given experiment is given by
$S=\{1,2,3,4,5,6\}$
Let $B$ be the event of the occurrence of a number greater than or equal to $3$ . Accordingly,
$B =\{3,4,5,6\}$
$\therefore P(B)=\frac{\text { Number of outcomes favourable to } B }{\text { Total number of possible outcomes }}=\frac{n(B)}{n(S)}=\frac{4}{6}=\frac{2}{3}$
એક સિક્કાને ત્રણવાર ઉછાળવામાં આવે છે. નીચે આપેલ ઘટનાઓનો વિચાર કરો :
$A :$ ‘કોઈ છાપ મળતી નથી,
$B :$ ‘એક જ છાપ મળે છે અને
$C:$ “ઓછામાં ઓછી બે છાપ મળે છે”.
શું આ પરસ્પર નિવારક અને નિઃશેષ ઘટનાઓનો ગણ છે ?
રજાઓમાં વીણાએ ચાર શહેરો $A, B, C$ અને $D$ ની યાદચ્છિક ક્રમમાં યાત્રા કરી છે. શું સંભાવના છે કે એણે $A$ ની યાત્રા સૌથી પહેલાં અથવા બીજા ક્રમે કરી ?
સચિન તેંડુલકર કોઈપણ $50$ ઓવરની એક દિવસીય આંતરરાષ્ટ્રીય ક્રિકેટ મેચમાં અયુગ્મ ક્રમાંકની ઓવર માં જ આઉટ થાય છે તેવી ધારણા કરવામાં આવે છે. તો તે મેચની નવમાં કે તેના ગુણાંક ક્રમાંકની ઓવરમાં આઉટ થાય તેની સંભાવના શોધો.
બે પાસાઓ ફેંકવામાં આવે છે. ઘટનાઓ $A, B$ અને $C$ નીચે આપેલ છે.
$A :$ પહેલા પાસા ઉપર યુગ્મ સંખ્યા મળે છે.
$B:$ પહેલા પાસા ઉપર અયુગ્મ સંખ્યા મળે છે.
$C :$ પાસાઓ ઉપર મળતી સંખ્યાઓનો સરવાળો $5$ કે $5$ થી ઓછો છે.
$A$ અને $B$ પરસ્પર નિવારક અને નિઃશેષ છે.
એક સમતોલ પાસાને એક વખત ઉછાળતાં ઉપરની બાજુએ $1$ અથવા $6$ પૂણાક મળે તેની સંભાવના.